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Ziaul Haque Munim a,*, Michael André Sørli a, Hyungju Kim b, Ilan Alon c,d 

a Faculty of Technology, Natural and Maritime Sciences, University of South-Eastern Norway, Campus Vestfold, Horten, Norway 
b Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway 
c Department of Economics and Business Administration, Ariel University, Ariel, Israel 
d School of Business and Law, University of Agder, Kristiansand, Norway   

A R T I C L E  I N F O   

Keywords: 
Maritime safety 
Maritime accident 
Machine learning 
Classification tree 
Artificial intelligence 

A B S T R A C T   

Machine learning (ML), particularly, Automated machine learning (AutoML) offers a range of possibilities for 
analysing large volumes of historical maritime accidents data with advanced algorithms for integrating pre
dictive analytics in operational and policy decision-making for improving maritime safety. This study explores 
historical data of maritime accidents in Norwegian waters over 40 years. The data has been utilised for analysing 
five major maritime accident categories: grounding, contact damage, fire or explosion, collision, and heavy 
weather damage. A total of 29 classification ML algorithms were trained, and the Light Gradient Boosted Trees 
Classifier was found to be the best-performing with the highest predictive accuracy. The three most impactful 
factors for accident risk are the category of navigation waters, phase of operation, and gross tonnage of the vessel. 
Based on the feature effect results, vessels sailing in narrow coastal waters, in the along-the-way operational 
phase, and fishing vessels are highly vulnerable to grounding relative to other types of accidents. The results can 
be used as input for the entire procedure of risk analysis, from hazard identification to quantification of accident 
consequences, and the best-performing ML algorithm can be utilized in developing a decision support system for 
real-time maritime accident risk assessment.   

1. Introduction 

Maritime activities at sea and in coastal areas, ranging from shipping 
to offshore installations, pose a degree of risk to the surroundings and 
hold the possibility to result in accidents. Maritime accidents entail the 
risk of damaging vessels, equipment, goods, and human lives. In 2021 
alone, as many as 2637 occurrences led to 36 fatalities and 621 injuries 
with vessels sailing in the EU waters ([1], p. 7). In shipping, it can also be 
the economic risk shipowners take by transporting something of value. 
The grounding of the ship Ever Given in the Suez Canal in March 2021 
accounted for an estimated economic loss of USD 6 to 8 billion per week 
[2]. 

A large number of factors are at play causing maritime accidents. 
These factors can be categorized into six groups: vessel and equipment 
related, navigation and operations related, human factors, environ
mental factors, traffic related, and shipping market condition related 
[3]. Vessel type, length, and tonnage are found important predictors of 
maritime accident risk [4–6]. Poor visibility, strong wind, heavy sea, 
and strong current are key navigation and environment related factors 
[4,6]. Human factors include inadequate manning, invalid competency 

certificates, and less sea experience of crew among others [6]. Congested 
shipping routes or locations and fluctuations in freight rates are relevant 
factors too. For instance, when shipping freight rates are high, it is 
common to increase sailing speed to make more trips before the rates go 
down. To avoid maritime accidents, understanding the most significant 
factors that contribute to maritime accidents is essential for operational 
and policy decision making. 

Maritime conventions regulated internationally by the International 
Maritime Organization (IMO), such as SOLAS, MARPOL, STCW, and 
COLREG were developed and amended over time to ensure maritime 
safety [7]. To enhance maritime safety further, particularly from an 
operational point of view, predicting future events and implementing 
warning systems can be a useful operational tool [8]. Today relevant 
data associated with maritime accidents is available in a large number of 
sources, such as Automatic Identification System (AIS) data, weather 
information, vessel related data from sensors including Revolutions per 
minute (RPM), temperature, pressure, operating time, vibration, and so 
on from equipment and machineries onboard. Vessel related data are 
usually available to shipowners and ship management companies, while 
various service companies can provide AIS and weather-related data. 
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However, large volumes of available data are not utilized by ship op
erators and other relevant stakeholders such as the coast guard in 
operational decision making. The continuous development in machine 
learning (ML) modelling approaches can offer valuable insights on the 
accident predictabily of vessels through utilizing available data [9]. 

Rawson and Brito [10] provide a detailed review of studies using ML 
in maritime risk analysis in terms of context, datasets and methodologies 
used. Previously several frameworks for maritime safety have been 
published within different domains and in the maritime transportation 
field [11]. Several studies cover accidents in certain sea areas, such as 
the Yangtze River [12], navigation risks in Taiwan [13], in Chinese 
coastal waters [14], visibility estimation for safer navigation in the strait 
of Istanbul [15], a risk prediction system for early warning in the Lower 
Mississippi River [8], and a case study for vessel traffic management of 
the Western port of Shenzhen City in China [16]. 

This study explores maritime accidents in the Norwegian coastal 
waters, which has not been explored much in the literature [10]. 
Further, the Norwegian Maritime Authority (NMA) provides one of the 
most structured historical accident records data spanning over more 
than 40 years. Although, Bye & Aalberg [4] show several factors that 
lead to an increased probability of navigation accidents in the Norwe
gian coastal waters, their approach and the one of this study vary 
significantly. Bye & Aalberg [4] predicted whether an accident is navi
gation related or other type of accident. Similarly, Wang et al., [6] used a 
worldwide accident dataset for the period of 2010 to 2019 to predict 
maritime accident severity. The focus of this study is on predicting the 
probability of a particular accident type such as collision, contact 
damage, fire/explosion, grounding, and heavy weather damage using a 
dataset covering more than 40 years of accident records. 

Moreover, application of recent developments in ML research such as 
the use of Automated Machine Learning (AutoML) to predict future 
maritime accidents is not evident in the existing literature. AutoML al
lows testing a wide-range of ML algorithms in a standalone as well as 
hybrid ensemble setting with optimised parameters to find the best- 
performing prediction model. Using AutoML, testing 20 or more rele
vant ML models for a particular dataset can be achieved within a 
manageable timeline. Further, AutoML, depending on the available tool 
used, facilitates robust cross validation of the model parameter as well as 
updating model parameters and hyperparameter optimization in a dy
namic mode. The feature impact and feature effects of the AutoML 
approach further increase interpretability of the results. Considering 
these gaps in the literature, this study addresses two research questions 
in the nexus between maritime accidents and ML applications. First, 
which factors are most significantly associated with maritime accidents? 
Second, which ML models are most accurate in predicting maritime 
accidents? 

This study is structured into six sections. In Section 2, the relevant 
literature on this topic is reviewed—also, theoretical background for 
maritime accidents to show the topic’s history. The methodology is 
presented in Section 3 and also the data collection. The study results are 
presented in Section 4, with a discussion following in Section 5. A 
conclusion that summarizes the answers to the research questions comes 
in Section 6. 

2. Literature review 

The purpose of this section is not to provide a comprehensive review 
of maritime accident literature but to identify the most relevant studies 
that used ML approaches to accident risk prediction. For a detailed re
view of maritime accident literature, see Luo and Shin [3] and Cao et al., 
[17]. For a comprehensive review of ML applications in maritime acci
dent risk analysis, see Rawson and Brito [10]. This study has reviewed a 
number of relevant journal articles on maritime accidents analysis that 
employed ML using a systematic approach. The literature search was 
conducted in the Web of Science (WOS) database using the Boolean 
expression: (“maritime accident*” AND “machine learning”) OR 

“maritime accident* analysis”. By manually screening the retrieved 
studies in WOS, 11 most relevant studies were identified. A summary of 
the most relevant studies is presented in Table 1. 

2.1. Machine learning approaches used in maritime accident risk 

ML is used to explore beyond the limitations of conventional 
methods to characterise risk. Studies use several different models to 
predict accidents, to mention some: regression analysis, grey system 
model (GM), exponential smoothing, Markov model [19]. In recent 
years, the use of ML has opened new doors to predicting accident risk by 
using models such as XGBoost, LightGBN, KNN, LinearRegression, 
DummyRegression, Logistic Regression (LR), Support Vector Machines 
(SVM), Random Forest (RF) [20,21,24]. Rawson, Brito, and Sabeur [22] 
use ML on historical casualty, weather, and vessel traffic data with an 
accuracy of 92 % and a recall of 95 %. However, most studies experi
mented between three and five ML algorithms, which limits the poten
tial for exploring a wider range of algorithms. 

The major accidents at sea can be prevented by various measures 
during the entire lifecycle of vessels, and one of the operational mea
sures is implementing systems for early warning. This way, predicted 
risk probabilities can become inputs to an automated system. Merrick 
et al. [8] investigated the prediction accuracy in a warning system for 
maritime accidents using machine learning. Seven algorithms were used 
to test the data: logistic regression (LR), decision trees (DT), random 
forest (RF), k-Nearest neighbour (kNN), neural network (NN), gradient 
boosted trees (GBT), and Stochastic gradient boosted trees (SGBT) [8]. 
SGBT performed with the highest accuracy of 98.3 % action precision. 
Zhao & Lv [19] used regression analysis, grey system model (GM), 
exponential smoothing, and Markov model. It is evident that model or 
method comparions were performed by most studies to reveal the 
best-performing approaches. However, the same ML model might 
perform with lower or higher accuracy if applied to a different context. 

Application of Bayesian networks were observed in two studies [14, 
18], while the classic Fault Tree Analysis (FTA) in one [23]. While FTA is 
widely used in risk assessment, as the systems under consideration 
become larger, application of FTA becomes complex and time 
consuming. Also, FTA is a static approach and not appropriate for the 
dynamic analysis of a system. Bayesian network allows for models with 
factors that are multi-state and have non-linear relationships between 
them [26]. In recent years, dynamic bayesin network models have been 
used in real-time risk analysis, too [27]. 

ML models have been used in other contexts of the maritime sector. 
Atak & Arslanoğlu [21] used it to predict accidents in ports. In their 
study, they used classification models, SVM, Kernel SVM, KNN, Light 
GBM, XGBoost, Logistic and Naïve Bayes. A historical dataset from a 
terminal was used as the training and test data, and a dataset from 
another terminal was used to validate the models. The results show that 
three classification methods had an accuracy of 97 % for prediction. Fan 
and Yang [28] have used ANN model to predict stress levels of ship 
navigators using psychophysiological data. Such an approach is novel 
and contributes to understanding human factors in maritime safety. 
However, this approach is mostly feasible in simulated environments, 
and available historical accident records do not have any psychophysi
ological data at the time of accidents. 

ML models were widely used in accidents prediction, management, 
and assessment in other industry contexts such as in aviation, nuclear, 
oil and gas, and transport sectors. For instance, the Deep Neural Network 
(DNN) model was found the best-in-class while predicting helicopter 
accidents [29]. Using deep learning models in combination with deci
sion trees, an operator tool was proposed for management of accidents 
in nuclear power plants [30]. Graph-based ML models has been used in 
post-accident risk assessment for a urban gas pipeline network [31]. The 
Convolution neural network (CNN) model was found suitable for 
high-rail grade crossings accident, particularly while dealing with 
imbalanced data [32]. 

Z.H. Munim et al.                                                                                                                                                                                                                               



Reliability Engineering and System Safety 248 (2024) 110148

3

The existing body of literature encompasses a diverse array of 
methodologies for analyzing maritime accidents, including both ML 
models and analytical techniques such as FTA, BN, and so on. It is 
observed in Table 1 that most studies used three to five ML algorithms in 
their analysis. Some of the literature have adopted a monolithic 
approach, applying a singular method to dissect and provide insights 
into marine accidents. The other studies have embarked on a compar
ative analysis, leveraging multiple ML algorithms to identify the most 
suitable algorithm tailored for marine accident analysis. Nonetheless, a 
noticeable gap in the literature is evident, as these investigations have 
only explored a limited repertoire of ML models without conducting a 
comprehensive comparison across a wide spectrum of ML algorithms. 
This study aims to bridge this gap by experimenting with AutoML to 
systematically compare the suitability of a wide range of ML algorithms. 
From this perspective, the novelty of this study lies in its methodological 
approach, utilizing AutoML to identify the best-performing ML models 
in the context of maritime accident risk analysis. 

2.2. Factors affecting maritime accident risk 

While use of ML models is evident in accident analysis within 
maritime and other industry contexts, the use of AutoML is rare. Many 
studies focus on maritime accidents, factors affecting them, prevention 
and prediction. The input variables in the models are of high importance 
for ensuring higher accuracy of predictions. The most relevant variables 
for maritime accidents are summarized in Table 2, which faciliates the 
choice of variables in this study. The variables found in the literature can 
be categorised as vessel properties, weather-related, route properties, 
and mechanical. 

Vessel properties related variables affecting maritime accidents are 
age of the vessel, length, deadweight tonnage, vessel type, vessel engine 
and materials, sailing speed, flag of convenience, flag state, maintenance 
records, classification society, ownership nationality, and number of 
crew onboard. Weather related factors are wind speed, wave height, 
visibility, and water depth. Route properties mainly relate to distance 
from shore and geographical location. Mechanical properties mainly 
include hydrodynamic effects. Several human and organizational factors 
are relevant such as safety culture, training and experience of the crew 
on board, communication in the bridge team etc. The majority of the 
published studies focused on vessel properties as listed in Table 2, and 
not all the variables in the table were available in the dataset used in this 
study, e.g., human and organizational related factors, vessel speed, 
distance from shore. While prior studies have made significant efforts in 

identifying critical factors influencing maritime accidents, none of them 
explored multiple accident class analysis. Most of them focused on one 
accident type or a binary target feature. This study addresses this gap by 
leveraging multi-class classification ML algorithms. This innovative 
approach allows for a nuanced examination of how accident risks differ 
across five types of marine accidents. This novelty is a key in creating 
better and more focused ways to prevent marine accidents, giving us a 
clearer and comprehensive picture of the complex factors that lead to 

Table 1 
Summary of relevant literature on maritime accidents.  

No Study Data type Data source Methods Best-performing 

1 Jiang et al. [18] 413 marine accidents LRF, IMO, 2010–2017 Bayesian network (BN) Bayesian network (BN) 
2 Zhao & Lv [19] 328 Maritime accidents In Tianjin, 2003–2013 Regression analysis, grey system models (GM), 

exponential smoothing, Markov model 
Markov GM (1,1) 

3 Rawson, Brito, Sabeur, & 
Tran-Thanh [20] 

207 unique accident data GISIS, AIS, MetOcean, 
2005–2018 

Logistic Regression (LR), Support Vector Machines 
(SVM), Random Forest (RF), XGBoost 

Support Vector 
Machines (SVM), 

4 Atak & Arslanoğlu [21] 16 accidents and 16 pre/ 
post-accident 

Accident reports from 
terminals in Turkey 

SVM, Kernel SVM, KNN, LightGBM, XGBoost, Logistic, 
Naïve Bayes classificatoion 

XGBoost, LioghtGBM, 
KNN 

5 Rawson, Brito, & Sabeur 
[22] 

2 127 Incident data MAIB, AIS (MMO), 
2021–2020 

Logistic Regression, Support Vector Machines, 
Random Forest, Gradient Boosted Trees (XGBoost) 

XGBoost, Random 
Forest 

6 Ugurlu & Cicek [23] 513 ship collision 
accidents 

MAIB, GISIS 1977–2020 Fault tree analysis (FTA) FTA 

7 Liu et al. [14] 414 maritime accidents China Maritime Safety 
Adm., 2013–2020 

Bayesian Network (BN) Bayesian Network 
(BN) 

8 Bye & Aalberg [4] 931 maritime accidents NMA, 2010–2016 Correspondence analysis, F-tests, Multivariate logistic 
regression 

N/A 

9 Kretschmann [24] 185 accident data on 544 
container vessels 

N/A DummyRegressor, LinearRegression, RandoForest(RF) RandimForest(RF) 

10 Uyanık et al. [15] Metrological data Local weather stations in 
the Strait of Instanbul 

AdaBoost Reg., Bayesian Ridge Reg.,Gradient Boosting 
Reg., 

Gradient Boosting 
Regression 

11 Park & Jeong [25] 737 marine accidents KMST, AIS-data, 
2014–2018 

Support Vector Machine (SVM), Relevance Vector 
Machine (RVM) 

Relevance Vector 
Machine (RVM)  

Table 2 
Factors affecting maritime accidents.  

Variable category Variables Reference 

Vessel properties  • Vessel speed  
• Vessel age  
• Vessel category  
• Vessel length  
• Vessel flag of convenience  
• Vessel flag state and 

safety regime  
• Maintenance  
• IMO number  
• Class society  
• Nationality  
• Tonnage  
• Building material  
• Number of people 

onboard 

Jiang et al. [18], Rawson, 
Brito, Sabeur, et al. [20], 
Rawson, Brito, & Sabeur [22], 
Bye & Aalberg [4], Mullai & 
Paulsson [33], B. Li et al. [34], 
Wang & Yang [35] 

Weather-related  • Wind speed  
• Significant wave height  
• Visibility  
• Water depth 

Rawson, Brito, Sabeur, et al. 
[20], Bye & Aalberg [4], 
Rawson, Brito, & Sabeur [22] 

Route properties  • Location of accident  
• Distance from shore 

Jiang et al. [18], Rawson, 
Brito, Sabeur, et al. [20] 

Human and 
organizational  

• Bridge Resource 
Management (BRM)  

• Communication  
• Position monitoring  
• Training and experience  
• Regulation  
• Inadequate procedures  
• Deviation from Standard 

Operating Procedures 
(SOP)  

• Lack of knowledge  
• Information  
• Clear order  
• Safety culture 

Rawson, Brito, & Sabeur [22], 
Coraddu et al. [36], Fan, 
Zhang, et al. [37] 

Mechanical  • Hydrodynamic effects Rawson, Brito, & Sabeur [22]  
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these accidents. 

3. Data and methodology 

This study uses AutoML to find the optimal model for predicting 
maritime accidents. Typically extensive knowledge and understanding 
of mathematics, statistics, and computer science is expected in utilizing 
ML models. AutoML platforms make ML models accessible to re
searchers and practitioners without extensive training requirements. Of 
course, some understanding of mathematics and statistics are still 
required. There are several AutoML platforms that exist today such as 
BigML, DataRobot, H2O etc. In this study, the ML models are trained and 
tested using the cloud artificial intelligence (AI) platform DataRobot 
[38]. This study adopted a five-step process as depicted in Fig. 1. 

3.1. Data 

To predict maritime accidents, it is important to use data that are 
relevant and representative. The data used in this study are collected 
from the Norwegian Maritime Authority’s (NMA) register for maritime 
accidents [39], available publicly. NMA’s responsibility is all 
vessel-related issues, for all “vessels flying under the Norwegian flag and 
foreign ships in Norwegian waters” [40]. The dataset is available in 
Excel format, where variables are coded in Norwegian. Only the facts 
regarding the accident events such as tonnage, location, type of injury, 
severity, data, etc. are available in the dataset. 

Before using the data in DataRobot, it was pre-processed by sorting 
out the unimportant factors and missing values. Pre-processing includes:  

• Translating data to English  
• Selecting the dependent variable Accident type with the parameters 

Collision, Contact damage, Fire/explosion, Grounding and Heavy 
weather damage. Based on the FSA reports by IMO, the accident types 
were selected. This reduced the dataset from 37 515 to 9 281 
datapoints.  

• Removing:  
○ Missing and unknown vessels  
○ Length and tonnage with the values of zero  
○ Datapoints with two or more missing/unknown variables  
○ Reduced the dataset to 9 025 datapoints  

• The selection of independent variables. Important are factors that do 
not consist of too many categories (less than 20) and factors that 
occurred or were known before the accidents happened and not 
after. For example, unimportant information in this study includes 
the IMO number, vessel name, evacuation of the vessel, number of 
fatalities, etc. 

The data are maritime accidents in Norwegian coastal waters from 
1981 to 2020. It consists of 13 different accident types. However, we 
focus on five accident types based on IMO’s FSA reports ([41], p. 13; 
[42], p. 12). In this study, considered maritime accidents are Collision, 
Contact damage, Fire/explosion, Grounding, and Heavy weather damage. 
Cao et al., [17] found that collision, machinery or hull damage, and 
capsizing lead to more severe maritime accidents. The dataset of this 
study consists of 9025 accidents from 1981 to 2020. The number of 
accidents distributed for each year is shown in Fig. 2. The total number 
of accidents during this period is relatively consistent with about 250 
occurrences per year. Accident frequencies were decreasing steadily 
from 1995 to 2004, and then kept increasing again. The year 2020 re
ports the lowest number of accidents, most likely due to low shipping 
activity during the COVID pandemic. The different accident types dis
tribution is also relatively stable over the years. Contact damage has a 
larger amount of instances in the last ten years compared to earlier. 

Further, the annual percentage distribution of accidents for vessel 
types is presented in Fig. 3. Cargo vessels account for the majority of the 
accidents, while mobile facility and pleasure vessels have considerable 
lower counting than the other vessel types. The distribution shows a 
slight change after 2004 with increasing percentage of accidents for 
pleasure and passenger vessels and a decreasing trend in fishing vessels. 
The accident data distribution of Norwegian coastal waters is identical 
to the data of European waters, where cargo ships too account for the 
majority of the accidents followed by passenger and fishing vessels [1]. 

The variables used in this study are presented in Table 3 (after pre- 
processing), which are chosen based on literature review and avail
ability of data. The goal is to use the independent variables in AutoML to 
classify and predict the outcomes of the dependent variable, that is, 
accident type. 

3.2. Methodological approach 

ML can be defined as “a set of methods that can automatically detect 
patterns in data, and then use the uncovered patterns to predict future 
data, or to perform other kinds of decision making under uncertainty” 
([43], p. 1). Based on the learning approach, ML is typically classified 
into three categories: supervised, unsupervised, and reinforcement 
learning [43]. While supervised learning is suitable for labelled data, 
unsupervised is used when dealing with unlabeled data, and reinforce
ment learning learns from the interactions within an environment [44]. 
Some of the most common supervised algorithms are SVM, neural net
works, random forests, decision trees, and genetic algorithms, while 
unsupervised algorithms include auto-encoders, deep learning, principal 
component analysis, and deep belief networks [44]. Moreover, based on 
output, ML has three methodological approaches: classification, 

Fig. 1. Research workflow in implementing AutoML.  
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clustering, and regression for class or condition detection, grouping or 
pattern recognition, and number prediction output, respectively [43]. 

The ML models utilized in this study can be referred to as a multiclass 
classification problem. Multiclass, because the outcome variable has 
more than two possibilities, and classification, because the output is a 
choice between classes, not numbers [45]. Although dates of the acci
dents are available in the data used in this study, it is not a time-series 
data structure since accidents occur irregularly. Hence, time series 
modelling approaches were not considered. In DataRobot, classification 
models were used to predict the accident type. However, two time fea
tures — month of the year and day of the week — were extracted 
through feature engineering from the date variable. These types of data, 
which are time-relevant but not a time series, should be evaluated in a 
Cross-Validation (CV) setting. A five-fold CV is considered for the 
robustness of the model estimates. For evaluation of the predictive 
performance of the ML models the Accuracy measure is used [46]. When 
selecting the suitable ML model for the dataset, four factors were 

considered: Speed of training, Memory usage, Predictive accuracy and 
Interpretability. 

3.3. Automated machine learning (AutoML) 

AutoML is about deciding the best ML model that fits data without 
any coding or major human manipulation, thereby automated [47]. 
Being an emerging research domain, there are relatively few published 
studies using AutoML yet. For complex analyses of large data sets, 
AutoML offers possibilities to test endless numbers of algorithms with 
optimized parameters in a manageable timeframe. Several studies dis
cussed the unexplored potentials of the AutoML approach [48,49]. 

3.4. DataRobot 

DataRobot is a cloud AI platform that offers advanced AI capabilities. 
With easy access and a user-friendly interface, both statisticians and 

Fig. 2. Maritime accidents in Norwegian Coastal Waters, 1981–2020.  

Fig. 3. Annual percentage of maritime accidents by vessel type 1981–2020.  
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scientists can perform data analysis and predictions on all desired data 
types. The platform uses AutoML solutions that identifies best- 
performing model, in performance and up to date features. DataRobot 
explores the data provided and builds a number of models that best fit 
the data based on data features and accuracy. DataRobot uses open- 
source algorithms to build models that fit the data [38]. 

3.4.1. Data processing 
The data are provided to the platform, and the target (dependent 

factor) to predict is selected by the user. The process can be divided into 
three phases, pre-processing, machine learning, and optimisation (see 
Fig. 4). The data are processed before being applied to algorithms and 
the training of models. This includes working with the "messy" data and 
cleaning it by transforming and reducing bad datapoints, finding the 

dataset’s features and selecting the training and validation data. The ML 
phase uses algorithms to train and validate various ML models. The 
automation optimises the parameters, and identifies the best-performing 
model in terms of accuracy [49]. 

3.4.2. Training, validation and holdout 
For robustness of ML models in predicting future events with un

known datasets with the same variables, the dataset at hand was divided 
into training, validation, and holdout samples. A part of the dataset 
needs to be selected as training data for estimating ML model prameters. 
The validation sample uses another part of the training data to test the 
trained model’s performance in a new sample which was not used in the 
training of model parameters. This procedure is known as Cross Vali
dation (CV), which controls for the overfitting issue in ML model esti
mation [50]. The holdout sample is separated from the training and 
validation process. The intention is to use the holdout information after 
selecting the best-performing model for a final evaluation of the per
formance. By not using the validation data in building models, valida
tion accuracy can be considered unbiased [51]. 

It is common to use five or ten fold cross validation in ML studies to 
control for the overfitting issue as these have been found to achieve a 
good balance between computing time and reliable estimation of model 
performance. Studies have found that ten fold CV does not have any 
advantage over five fold (Feng et al., 2005; [52]). Hence, considering the 
sample size and findings from past studies we implemented five-fold CV. 
In CV, the default settings by DataRobot divide the data into 80 % 
training and validation, and 20 % holdout. Out of the 80 %, validation 
sample uses 20 % (1/5). This means that the training sample size is 64 % 
[100 %-(80 %/5)− 20 %]. Five-fold cross validation is applied providing 
five sub-datasets (folds) that test the analysed model’s performance 
individually (Fig. 5). The mean accuracy of the five CVs is the value 
presented as the model’s accuracy leaderboard [51]. This CV approach 
reduces the overfitting and sample bias problem in ML. 

3.4.3. Evaluation metrics 
Evaluating the predictions of an algorithm is essential to validate 

their performance. Several metrics can be used to measure the perfor
mance of classification models, e.g. accuracy, precision, recall, F1-score, 
Receiver Operating Characteristic (ROC) and Area Under the Curve 
(AUC) [47]. The accuracy is relatable and describes the percentage of 
correctly classified accidents, with the ratio of correct predictions over 
correct and wrong predictions. The calculation is described as follows 
[46]: 

Accuracy =
TP + TN

TP + FN + FP + TN
(1) 

Here, correct predictions include TP – True positives, TN – True 
negatives. Incorrect predictions include FP – False positives, FN – False 
negatives. In Multiclass Confusion Matrix (MCM), True Positive Rate 
(TPR), Positive Predictive Value (PPV), and the F1-score are presented 
as accuracy measures. 

TPR or Recall, also known as sensitivity, shows the values correctly 
identified by the model: 

True Positive Rate (TPR) =
TP

TP + FN
(2) 

PPV or Precision shows the correctly identified predicted values by 
the model: 

Positive Predictive Value (PPV) =
TP

TP + FP
(3) 

A model’s accuracy described by F1-score is the relative importance 
of precision vs recall: 

F1 − score =
2(PPV*TPR)
PPV + TPR

(4) 

Table 3 
Variables with descriptives.  

Variable Label Descriptive values and 
frequencies 

Date  • Year – Month – Week – 
Day  

• 1981–2020 

Accident type (Target 
variable)  

• Collision  
• Contact damage (quay, 

bridge, etc.)  
• Fire/explosion  
• Grounding  
• Heavy weather damage  

• 1 850 (20.5 %)  
• 1 229 (13.5 %)  
• 1 084 (12 %)  
• 4 722 (52.5 %)  
• 140 (1.5 %) 

Type of vessel  • Cargo vessel  
• Passenger vessel  
• Fishing vessel  
• Pleasure vessel  
• Mobile facility  

• 3 915  
• 2 277  
• 2 703  
• 99  
• 31 

Waters  • Narrow coastal waters  
• In port area  
• Lakes  
• Canal, river, etc.  
• Separation and caution 

area  
• Oil field  
• Along quay  
• Archipelagic  
• Other  
• Unknown  
• Outer coastal waters  
• Open sea area  

• 3 284  
• 2 153  
• 17  
• 491  
• 22  
• 80  
• 437  
• 1  
• 17  
• 6  
• 1 764  
• 651 

Length  • 3–366 m  • Mean: 61.20  
• SD: 55.89  
• Median 46.6  
• Min: 3  
• Max: 366 

Gross tonnage  • 0.5–169 658 tonnes  • Mean: 4 510  
• SD: 13 923  
• Median: 429  
• Min: 0.5  
• Max: 169 658 

NOR  • Norwegian nationality  • YES: 8 347  
• NO: 678 

Phase of operation  • Arrival at port  
• At quay  
• Departure at port  
• Along the way  
• At dock  
• Unknown  
• Other  
• Safety condition  
• By installation  
• In operation  
• Dynamic positioning  
• During fishing  
• During towing  
• By loading buoy  
• In drilling position  
• Anchored  
• In circulation  

• 1 334  
• 432  
• 446  
• 5 300  
• 35  
• 54  
• 104  
• 1  
• 81  
• 143  
• 18  
• 353  
• 21  
• 7  
• 9  
• 125  
• 17  
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4. Results 

The results based on the analysis in DataRobot are presented in this 
section with the ML model’s accuracy of prediction. The data used for 
training and validation (80 %) are distributed with 52 % Grounding, 20.5 
% Collision, 14 % Contact damage, 12 % Fire/explosion and 1,5 % Heavy 
weather damage. Fig. 6 presents the DataRobot model training initiation 

window. 

4.1. Prediction models 

In the comprehensive modelling mode, DataRobot trained a total of 
29 ML algorithms. The performance information of the 29 estimated 
algorithms are presented in the Appendix (see Table 6). The accuracy of 
the top 5 models is presented in Table 4 in high to low accuracy order. 

Fig. 4. AutoML process, based on [49].  

Fig. 5. Five-fold cross-validation illustration.  

Fig. 6. DataRobot training initiation window.  
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The top three models are the same model with varying sample size. The 
blueprint of the best-performing model, that is, Light Gradient Boosted 
Trees Classifier with Early Stopping (SoftMax Loss) (64 leaves), is re
ported in Fig. 15 in the Appendix. The results also show that tree-based 
algorithms are top-performing for maritime accident risk prediction 
with a relatively stable accuracy of around 64 %. For the robustness 
check, the best-performing model is validated through Python (note
book copy provided as supplementary material). First, the algorithm is 
trained on 80 % data and tested on 20 % with accuracies of 89.60 % and 
61.22 %, respectively. Further, five-fold cross validation was applied to 

the training sample, similar to the approach adopted in DataRobot. The 
accuracy in CV folds were between 59.49 % and 62.26 %, with an 
average accuracy of 61.18 %, which are identical to DataRobot accuracy 
percentages. 

The model recommended by DataRobot is the Light Gradient Boosted 
Trees Classifier with Early Stopping (SoftMax Loss) (64 leaves) (here
after referred to as LightGBM). This tree-based algorithm has some ef
ficiency advantages in its design compared to standard Gradient 
Boosting Machines (GBM). It can handle large datasets faster and more 
accurately without too much memory [53,54]. GBM is known as one of 
the most versatile prediction algorithms and is based on the AdaBoost 
algorithm initially proposed by Freund & Schapire [55] with close 
connections to random forests models. 

The LightGBM algorithm was developed in 2017 to improve the ef
ficiency of the XGBoost algorithm on large datasets and multiple fea
tures. XGBoost is a time-consuming algorithm as it has to make the 
decision trees with all the possibilities for all factors. LightGBM uses 
three methods to improve efficiency compared to other gradient boosted 
methods: histogram-based decision tree algorithms, Gradient-Based 
One-Side Sampling (GOSS), and Exclusive Feature Bundling (EFB) 
[54]. The histogram-based decision trees to reduce the use of memory 
and increase speed, GOSS for increasing accuracy by including more 
gradients (in extensive range), and EFB for reducing the number of 
features. 

4.2. Speed and accuracy 

One of the important factors in selecting ML models is the speed of a 
model estimation and its relative accuracy. Fig. 7 presents the speed 
versus accuracy chart of the most relevant estimated models. It is 
observed that the LightGBM model (Model: M74, Blueprint: BP10) is 
providing the highest accuracy in lowest time. Hence, it was selected as 
the best-performing model. 

Table 4 
Top 5 ML models for maritime accident prediction.  

No. Model Sample 
size 

Validation Cross- 
Validation 

Holdout 

1 Light Gradient 
Boosted Trees 
Classifier with Early 
Stopping (SoftMax 
Loss) (64 leaves) 

100 % 0.6496 0.6427 0.6249 

2 Light Gradient 
Boosted Trees 
Classifier with Early 
Stopping (SoftMax 
Loss) (64 leaves) 

80 % 0.6406 0.6375 0.6294 

3 Light Gradient 
Boosted Trees 
Classifier with Early 
Stopping (SoftMax 
Loss) (64 leaves) 

64 % 0.6434 0.6349 0.6194 

4 Light Gradient 
Boosted Trees 
Classifier with Early 
Stopping (SoftMax 
Loss) (16 leaves) 

64 % 0.6475 0.6328 0.6294 

5 Gradient Boosted 
Trees Classifier with 
Early Stopping 

64 % 0.6413 0.6323 0.6183  

Fig. 7. Speed and accuracy of top performing ML models.  
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4.3. Feature impact 

Feature impact shows the impact of each feature (or independent 
variable) under the selected ML model. Each factor is described with a 
percentage that represents the impact. The first factor has a default of 
100 %, and the others are relative to that top factor. The value is a 
measurement of how much the predictive accuracy of the model is 
affected by changes in that factor [56]. Fig. 8 shows the aggregate 
feature impact diagram (a) — the overall impact of the features on the 
model, and the feature impact for each accident type (b-f). The results 
show that a change in the features Waters, Phase of operation and Gross 
tonnage significantly impacts the likelihood of accident type on an 
aggregate level (Fig. 8a). 

For a particular accident type, the most significant features vary. The 
three most impactful features for collisions are waters, gross tonnage, 
and length of vessel (Fig. 8b); for contact damage, phase of operation, 
waters, and type of vessel (Fig. 8c); for fire and explosion phase of 
operation, waters, and gross tonnage (Fig 8d); for grounding, waters, 
phase of operation, and gross tonnage (Fig 8e); and for heavy weather 
damage, waters, gross tonnage, and length (Fig 8f). The ranking of the 
three most impactful features are the same for collision and heavy 
weather damage accidents. Waters is the most impactful for collision, 
grounding, and heavy weather damange, while phase of operation is the 
most impactful for contact damage and fire/explosion. 

4.4. Feature effect 

Feature effect shows how each input feature (or independent vari
able) effects the target (or dependent variable) under the best- 
performing ML model. The results in Fig. 9 to 13 show the effect of 
each input feature on the accident types collision, grounding, contact 
damage, fire and explosion, and heavy weather damage, respectively. 

Feature effect figures depict three values: actual, predicted, and 
partial dependence. Acutal represents the original data in the sample 

dataset. The predicted values are based on the prediction of the best- 
performing model. The partial dependence values represent the 
impact of a feature on the target while accounting the impact of other 
features in the model, and its value ranges between 0 and 1. The cate
gories Other Unseen and Missing are a collection of data that are not in the 
training set or missing in total [56]. 

Based on the partial dependence values in Fig. 9, among the cate
gories of waters feature, open sea area and oil field are highly associated 
with collisions (Fig 9a). For gross tonnage and length of vessel features, 
the risk of collision increases steadily with an increase in vessel tonnage 
and length (Fig. 9b-c). Some cut-off points are observed as well. For 
example, length of vessel exceeding 100 meters increases the risk of 
collision to a greater extent. For phase of operation, arrival and depar
ture at port, and at quay, dock, or circulation are associated with low 
risk of collision (Fig. 9d). Mobile facilities and pleasure vessels exhibit a 
higher risk of collision (Fig 9e). In some months of the year the risk of 
collision is higher than others, for instance, April, June, and July (Fig 
9f). In the day of the week feature, weeks start from Sunday (0) and 
finish on Saturday (6). Later days of the week have a lower association 
with collision (Fig 9g). Finally, non-norwegian vessels and vessels of 
which ownership information is missing are more associated with 
collision risk (Fig. 9h). Similarly, the feature effect figures of grounding 
(Fig 10a-h), contact damage (Fig 11a-h), fire and explosion (Fig 12a-h), 
and heavy weather damage (Fig 13a-h) can be interpreted. 

The values in feature effect figures are relative to the y-axis, the exact 
partial dependence values were extracted as CSV files. The impact values 
are between 0 and 1, which can be classified as low, medium, and high 
risk based on the effect value. The exact feature effect values for the five 
accident categories for three impactful features are reported in Table 5. 
Feature effect values of gross tonnage and length of vessels are not re
ported here since each numeric value in the data is associated with a 
feature effect score. Feature effect scores for month of the year, day of 
the week, and Norwegian vessel features are not reported as they are not 
among the most impactful features. The results show that the different 

Fig. 8. Feature impacts.  
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accident type is associated differently with the same feature. For 
example, among the categories of Waters, Narrow coastal waters (0.681) 
has a high association with grounding, while very low with other types of 
accidents. Among the categories of the Phase of Operation variable, Along 
the way (0.581) has a high association with grounding, low (0.218) with 
collision, and very low with others. Similarly, association with other 

feature categories and accident types can be interpreted. 

4.5. Multiclass confusion matrix (MCM) 

The MCM visualises the best-performing model’s prediction perfor
mance in a matrix structure, where correct and incorrect prediction 

Fig. 9. Feature effects on collision.  
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frequencies are presented. Green represents correct prediction and red 
represents incorrect. The exact values for each feature’s performance 
(F1 score, recall and precision) are shown in Fig. 14 (b-f). 

5. Discussion 

The Light Gradient Boosted Trees Classifier with Early Stopping (SoftMax 
Loss) (64 leaves) has been found best-performing ML model for pre
dicting maritime accidents in the Norwegian coastal waters. LightGBM 
has shown good performance in Atak & Arslanoğlu [21] for accident 

Fig. 10. Feature effects on grounding.  
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prediction in ports with an accuracy of 97 %. The LightGBM model has 
also shown good performance in other transportation areas, such as the 
emergency evacuation of metro stations [57] and predicting road traffic 
injury severity with an accuracy of 73 % [58]. While the latter accuracy 
is similar to this study, the higher accuracy in Atak & Arslanoğlu [21] 
could be due to their dataset features and contexts. 

In general, a trend has been observed in the result of feature impact. 
Waters and Phase of operation have been the most impactful for most 
accident type predictions. This indicates that these factors are the most 
important to consider in the accident risk management of vessels oper
ating in Norwegian waters. Other studies have found similar results, 
where location was one of the main influencing factors [18,35]. Gross 

Fig. 11. Feature effects on contact damage.  
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tonnage, Length and Type of vessel are considered contributing factors for 
maritime accidents in this study. This is consistent with results found by 
other researchers [4,20,27,33]. Meanwhile, the feature Phase of opera
tion, to the best of authors’ knowledge, was not mentioned in the liter
ature as a contributing factor to maritime accidents. This feature should 

be explored further as it has been found to be one of the most impactful 
in this study. Further, it is interesting to observe the impacts of month of 
the year, and day of week (see Fig. 9 and 10). These variables vary 
within a scope that is the same for the future as for the past. These trends 
and factors can be utilized for the entire process of risk analysis. For 

Fig. 12. Feature effects on fire and explosion.  
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instance, the most impactful factors of each accident type can be used as 
guidewords for hazard identification (HAZID), and the trend can be an 
input to quantify accident scenarios in both frequency and consequence 
analysis. 

In terms of ML models performance, the results show that the 

accuracy is stable at around 66 % for validation, cross-validation and 
holdout for the best-performing model. The results of feature impact 
show the importance of the different features in predicting the accident 
types. This can be used in both planning of and during the operation to 
see where to put the effort of reducing risk. If specific values of the 

Fig. 13. Feature effects on heavy weather damage.  
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features are explored, the association between feature values and acci
dent types are noticed, which can guide identifying "safer" operational 
states. An example from the Grounding data is: Along the way in Narrow 
coastal waters with a Fishing or Cargo vessel has a higher likelihood of 
Grounding than the other accidents. On the other hand, there is a lower 
likelihood of Contact damage in Open sea areas, During fishing with Fishing 
vessels. 

Another observation is that Narrow coastal waters have a relatively 
low association with Collision, although the expectation would be the 
opposite. The expectations would be that narrow waters mean less dis
tance between vessels and thus harder to manoeuvre, leading to more 
collisions. On the other hand, narrow waters require more caution and 
attention to correct vessel handling, with relatively lower ship speed. It 
may be that these situations raise the alert level and trigger procedures, 
e.g. more personnel on the bridge, extensive use of the radar and AIS, 
several lookouts etc., with more available time to react to the situations. 
Type of vessel generally has a lower association with accident types, 
about 33 %. This is an interesting result because others have found that 
vessel type is one factor that affects accidents the most [4]. 

The multiclass confusion matrix shows the correct and incorrect 
classification done by the model. TP/TN and FP/FN describe the model’s 

correct and incorrect predictions for each selected variable. Fig. 11 
shows that the model’s accuracy varies much for the different variables. 
This needs to be considered together with the data distribution. 
Grounding has the best F1 score of 0.77 with 52 % of the data in the 
sample compared to Heavy weather damage F1 score of 0.09 with 1.5 % of 
the data. This indicates a connection between the model accuracy and 
the number of datapoints available. 

The marine traffic system is a safety system composed of human, 
ship, environment and management factors. Therefore, maritime acci
dents are the results of the comprehensive interaction of these factors. 
The variables used in this study are limited to ship related factors. A ship 
is likely to have multiple decision support systems (DSS). The proposed 
model in this study could be one of the DSS. Although human factors are 
not incorporated into the proposed model, it can predict maritime ac
cident risk in real-time when implemented, and the outcome can be used 
in a further, human factor based DSS. For example, when high risk is 
indicated based on our proposed model, the crew on board can get an 
alert. 

Table 5 
Feature effect categorization by risk probability.  
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6. Conclusion 

AutoML offers a wide-range of possibilities for analysing data using 
advanced ML models. This study used AutoML for predicting maritime 
accidents while addressing two research questions. Regarding the first 

research question, some factors have higher association with different 
accident types—especially Waters (i.e. area of navigation at the time of 
accident) and Phase of operation. The Phase of operation is not mentioned 
in the existing literature, hence, a contributing factor to maritime ac
cident literature and should be considered in operational decision- 

Fig. 14. Multiclass confusion matrix.  
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making and future research. Regarding second research question, tree- 
based models perform best for predicting maritime accidents in Nor
wegian coastal waters, particularly, the LightGBM family models. The 
accident data analysis results can be utilized for various steps in risk 
analysis of vessels, and the identified models can be used in developing a 
DSS for warning vessels about their predicted accident risk. Inclusion of 
further variables such as weather data and vessel sensor data can 
improve the model accuracy and might be useful in developing real-time 
accident risk assessment DSS. Applying AutoML to "live" data on 
different factors can function as a risk indicator that can alert the crew to 
avoid accidents. 

There are a few limitations to this study. The dataset uses only 
Norwegian data from Norwegian waters. One of the reasons for choosing 
the dataset is that the Norwegian Maritime Authority provides one of the 
most structured historical accident records data spanning over more 
than 40 years. However, data does not include any information about 
the cause of the accident, and the exact position of the vessels is not 
considered, only the area. Traffic, topographic conditions and water 
depths in the area are also not considered. The recommendations for 
further research would be to follow up on this study and explore the 
limitations. For example, to apply AutoML to other datasets with addi
tional variables such as weather-related factors. Further, adding spatial 
integration, GPS data, AIS history, topographic conditions, etc., to get 
better accuracy of the models and define areas of increased risk would be 
interesting. Another limitation is that the ML models are trained using 
data of only Norwegian coastal waters, which might not fit other 
context. Accident records data collected from other countries or regions 
need to be re-trained before deploying for accident prediction. Of 

course, AutoML simplifies the re-training process. 
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Appendix

Fig. 15. Blueprint of light gradient boosted trees classifier.   

Table 6 
Predictive performance of the 29 trained ML algoritms.  

No ML Algorithms Sample 
% 

Holdout Area Under the Curve Accuracy 

1 Gradient Boosted Trees Classifier with Early Stopping 64 1805 AUC: [0.81036, 
0.8039] 

Accuracy: [0.64127 
0.63227] 

2 Majority Class Classifier 64 1805 AUC: [0.5] Accuracy: [0.51939] 
3 Keras Deep Residual Neural Network Classifier using Training Schedule (2 Layers: 512, 512 

Units) 
64 1805 AUC: [0.73315] Accuracy: [0.5831] 

4 Keras Slim Residual Neural Network Classifier using Adaptive Training Schedule (1 Layer: 64 
Units) 

64 1805 AUC: [0.81027] Accuracy: [0.63296] 

5 Stochastic Gradient Descent Classifier 64 1805 AUC: [0.80302] Accuracy: [0.62465] 
6 Keras Deep Residual Neural Network Classifier using Training Schedule (3 Layers: 512, 64, 

64 Units) 
64 1805 AUC: [0.8145] Accuracy: [0.63435] 

7 Regularized Logistic Regression (L2) 64 1805 AUC: [0.79738] Accuracy: [0.61704] 
8 RandomForest Classifier (Gini) 64 1805 AUC: [0.8086] Accuracy: [0.62327] 
9 Keras Deep Self-Normalizing Residual Neural Network Classifier using Training Schedule (3 

Layers: 256, 128, 64 Units) 
64 1805 AUC: [0.81214, 

0.8042] 
Accuracy: [0.63573 
0.626592] 

10 Light Gradient Boosted Trees Classifier with Early Stopping (SoftMax Loss) (16 leaves) 64 1805 AUC: [0.81385, 
0.8061] 

Accuracy: [0.64751 
0.632826] 

11 Stochastic Gradient Descent Classifier 64 1805 AUC: [0.74579] Accuracy: [0.58172] 
12 Light Gradient Boosted Trees Classifier with Early Stopping (SoftMax Loss) (64 leaves) 16 1805 AUC: [0.79037] Accuracy: [0.62535] 
13 Light Gradient Boosted Trees Classifier with Early Stopping (SoftMax Loss) (64 leaves) 32 1805 AUC: [0.8002] Accuracy: [0.6392] 
14 Light Gradient Boosted Trees Classifier with Early Stopping (SoftMax Loss) (64 leaves) 100 1805 AUC: [0.77782, 

0.7823] 
Accuracy: [0.64958 
0.642656] 

15 Keras Residual Neural Factorization Machine Classifier using Training Schedule (2 Layers: 
96, 96 Units) 

64 1805 AUC: [0.7928 Accuracy: [0.61011] 

16 Gradient Boosted Greedy Trees Classifier with Early Stopping 64 1805 AUC: [0.80989, 
0.8039] 

Accuracy: [0.64335 
0.629364] 

17 Decision Tree Classifier (Gini) 64 1805 AUC: [0.79513] Accuracy: [0.62673] 
18 Keras Wide Residual Neural Network Classifier using Training Schedule (1 Layer: 1536 

Units) 
64 1805 AUC: [0.73024] Accuracy: [0.56371] 

19 Light Gradient Boosted Trees Classifier with Early Stopping (SoftMax Loss) (64 leaves) 64 1805 AUC: [0.80706, 
0.80289] 

Accuracy: [0.64335 
0.634902] 

20 Light Gradient Boosted Trees Classifier with Early Stopping (SoftMax Loss) (64 leaves) 64 1805 AUC: [0.80824, 
0.80132] 

Accuracy: [0.64058 
0.632269] 

21 Light Gradient Boosted Trees Classifier with Early Stopping (SoftMax Loss) (64 leaves) 80 1805 AUC: [0.77619, 
0.77507] 

Accuracy: [0.64058 
0.6375339] 

22 ExtraTrees Classifier (Gini) 64 1805 AUC: [0.7921 Accuracy: [0.62673] 
23 eXtreme Gradient Boosted Trees Classifier with Early Stopping 64 1805 AUC: [0.80946, 

0.80376] 
Accuracy: [0.64197 
0.630746] 

24 Stochastic Gradient Descent Classifier 64 1805 AUC: [0.79663] Accuracy: [0.62396] 
25 Stochastic Gradient Descent Classifier 64 1805 AUC: [0.79802] Accuracy: [0.61911] 
26 Keras Residual AutoInt Classifier using Training Schedule (2 Attention Layers with 2 Heads, 

2 Layers: 96, 96 Units) 
64 1805 AUC: [0.81104, 

0.80374] 
Accuracy: [0.63712 
0.626594] 

27 Keras Residual Cross Network Classifier using Training Schedule (3 Cross Layers, 4 Layers: 
96, 96, 72, 72 Units) 

64 1805 AUC: [0.81113, 
0.80327] 

Accuracy: [0.63504 
0.62964] 

28 Keras Slim Residual Neural Network Classifier using Training Schedule (1 Layer: 64 Units) 64 1805 AUC: [0.81485] Accuracy: [0.63296] 
29 Keras Slim Residual Neural Network Classifier using Adaptive Training Schedule (1 Layer: 64 

Units) 
64 1805 AUC: [0.80557] Accuracy: [0.62465]  
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